检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学计算机应用工程研究所,广州510641 [2]华南理工大学计算机学院,广州510641
出 处:《计算机工程》2008年第11期211-213,共3页Computer Engineering
摘 要:提出利用分形几何抽取音频特征的全局化音频检索,将其学习阶段计算音频数据库中每个音频的分维作为特征向量,保存在音频特征数据库中,并建立索引。其检索阶段则首先计算查询音频的分维,然后从音频数据库中快速找出分维最相似的若干音频对象。分维刻画了音频的内在属性如自相似性,使其具有片段检索对匹配的起点不敏感、抗噪音、检索速度快等优点。用FRACTAL,MFCC和SOLAR3种方法对数据集分别检索,实验结果表明基于分维的音频检索在性能和时间复杂度上有显著优势。The fractal geometry-based feature extraction is proposed for audio retrieval system. During the learning process, the system computes the fractal dimension as the feature vector for each audio in audio database and then saves it in the feature vector database. In the retrieval process, the fractal dimension for the query audio is firstly extracted, by which the most similar audios from the audio database are retrieved. The fractal dimension is intrinsic for each audio such as self-similarity so as to make it not sensitive to noise and position of the audio fragment to be retrieved from the long audio. It also retrieves the audios quickly. Compared with FRACTAL, MFCC and SOLAR, the experimental results validate that the proposed approach advances in performance and time complexity.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147