基于Landsat TM图像的长株潭城市群地表温度遥感反演  被引量:3

Land-surface Temperature Retrieve from Landsat TM Data In Urban Agglomeration of Changsha,Zhuzhou and Xiangtan

在线阅读下载全文

作  者:孙华[1] 林辉[1] 熊育久[2] 

机构地区:[1]中南林业科技大学林业遥感信息工程研究中心,湖南长沙410004 [2]北京师范大学资源学院,北京100875

出  处:《中南林业科技大学学报》2008年第2期85-90,共6页Journal of Central South University of Forestry & Technology

基  金:国家“十一五”科技支撑课题(2006BAD23B01);国家自然科学基金(30471391);湖南省自然科学基金(07JJ3060);湖南省学科带头人培养基金;中南林业科技大学人才基金(07Y037);中南林业科技大学青年科学研究基金(07005B)

摘  要:陆地表面温度(LST)是地表能量平衡中的一个非常重要的参数,它在地表与大气相互作用过程中起着重要的作用.在总结和分析当前常用的地表温度反演算法后,根据收集到的1993年8月25日TM的资料,采用单通道算法反演长株潭城市群地表温度(LST),利用卫星过境当天观测的平均温度对反演结果进行验证,误差小于1℃,可以满足大多数应用的精度要求.地表温度反演结果表明:反演结果与实际相吻合,平均温度为27℃;反演温度大小依次是城镇用地高于自然植被,自然植被高于水体;地表温度由城镇中心向外呈现逐渐降低的趋势,长沙、株洲和湘潭市城区温度明显比其它地区高.Land-surface temperature (LST) is a very important parameter in surface energy balance, which plays a key role in the interactions between ground and atmosphere. Based on an introduction and analysis of the algorithms commonly used to retrieve surface temperature, a mono-window algorithm is selected to retrieve the surface temperature due to the data on hand. After validating the results of LST with the average air temperature obtained from meteorological stations in August 25, 1993, the results show that the error is smaller than 1℃, which is accurate for many applications. In conclusion, the following can be summarized: 1) the retrieved results are reasonable since the average LST with a value of 27 ℃ is consistent to the temperature of the study area in August; 2) city or town land has the highest LST, followed by vegetation and water; 3) according to the distribution of retrieved LST, temperature gradually decreases from the center of cities, thus the temperatures of Changsha, Zhuzhou and Xiangtan urban areas being obviously higher than that in other areas.

关 键 词:遥感技术 地表温度反演 TM 单通道算法 长株潭城市群 

分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象