检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北林业大学,哈尔滨150040
出 处:《东北林业大学学报》2008年第6期55-56,62,共3页Journal of Northeast Forestry University
基 金:国家高技术研究发展计划项目(2006AA12Z104);黑龙江省攻关课题(GC04B713)
摘 要:在遥感图像分类研究方面人工神经网络是一种有效途径,与传统的分类方法相比概率神经网络具有许多优良的性能,因此利用神经网络工具箱构建了概率神经网络,经对比分类精度选取最优SPREAD=0.009,并对一幅TM假彩色遥感图像通过训练后,仿真输出能真实地反映原始图像的特征,其分类总精度为82.62%,Kap-pa系数为0.7821,结果表明:分类精度能够满足遥感图像分类的需要。The artificial neural network is a kind of effective way in remote sensing image classification. Compared with traditional classification methods, probabilisfic neural network has many superior performances. Therefore, the probabilistic neural network was constructed by utilizing the neural network toolbox and choosing the optimal SPREAD (0. 009) compared with the classified precision. A TM false color composition image was trained and a satisfactory simulation result was got by applying the probabilistic neural network. The total classification precision is 82.62% , and Kappa coefficient is 0. 7821. The result shows that the classification precision can meet the demand of remote sensing image classification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13