检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李如忠[1] 洪天求[1] 钱家忠[1] 高苏蒂[1]
机构地区:[1]合肥工业大学资源与环境工程学院,合肥230009
出 处:《中国农村水利水电》2008年第6期19-22,共4页China Rural Water and Hydropower
基 金:安徽省"十一五"科技攻关计划重点资助项目(0701032165);安徽省自然科学基金资助项目(050450303)
摘 要:从水质系统中多种不确定性共存或交叉存在的角度,将未确知数学中盲数理论应用于水质综合评价。在将污染指标实测值表示为盲数的基础上,构建了水质评价综合指数盲数模型和等级识别盲数可靠性模型。根据上述模型,可以得到水质综合指数各种可能取值区间及其相应的可信度水平,进而识别出待评水域水质等级。实例研究表明,所建模型对水质综合评价具有很好的适用性。Based on the characteristic that several uncertainties, such as random, grey and unascertained may occur simultaneously in one system, the blind number theory in Unascertained Mathematics is applied to the assessment of water quality. By denoting the monitoring data of water quality for each index as blind numbers, a new water quality index model with blind number parameters and a blind reliability model for identifying the ranks of water quality are established. According to the two models, not only the possible interval values and their corresponding faith degrees for synthetic index number of water quality, but also the ranks of water quality of evaluated water can be identified. As a case, the blind number models established here are applied to the synthetic assessment of water quality in the reach of Bengbu City in the Huaihe River. Research findings show that it is feasible and reliable to employ the blind number theory for water quality assessment.
分 类 号:X824[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249