一类M对N格斗的射击策略的无差异性  

The Indifference Character of Shot Strategies in a M versus N Duel

在线阅读下载全文

作  者:杨访[1,2] 刘力维[1,2] 

机构地区:[1]中国药科大学数学系 [2]南京理工大学理学院

出  处:《南京理工大学学报》1997年第5期473-476,共4页Journal of Nanjing University of Science and Technology

摘  要:记格斗双方为A方与B方,A方有M件同类型武器,B方有N件同类型武器,双方武器种类可以不同。设A(B)方一件武器的射击时间间隔XA(XB)服从参数为rA(rB)的指数分布,NA(t)(NB(t))为A(B)方一件武器在时间[0,t)内的射击次数,则NA(t)(NB(t))是参数为rA(rB)的泊松随机过程。在此假设下,该文证明对任意的MN格斗,任一方的射击策略的改变既不会增大也不会减少己方在格斗中的获胜概率。对于这种情况,可以说格斗双方都不存在所谓的最优射击策略。Suppose that the two sides in a duel are side A and side B and that side A has M weapons of the same kind and side B has N weapons of the same kind.Both sides may differ in their weapons.Let X A be the firing time intervals of a weapon of side A and X B be those of a weapon of side B,and X A~ ned (r A),X B~ ned (r B). Also, N A(t)(N B(t)) is the shot times of one weapon of side A (side B) in the time interval [0,t). Then,the paper can prove that N A(t)(N B(t)) is a poisson stochastic process with the parameter r A(r B).Under the assumptions stated above,the paper proved that alternations of shot strategies in either side can neither increase nor decrease its winning probability in the duel.In the situation like this,it means that there are no so called optimum shot strategies for both sides.

关 键 词:运筹学 随机 射击概率 格斗 

分 类 号:E920.2[军事—军事装备学] O221.2[兵器科学与技术—武器系统与运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象