检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]桂林空军学院,广西桂林541003
出 处:《数值计算与计算机应用》2008年第2期81-88,共8页Journal on Numerical Methods and Computer Applications
摘 要:在控制系统实时Runge-Kutta算法中,为了满足实时仿真快速性需求,希望尽可能地采用大的计算步长.如果采用大步长,那么数值计算就会引起数值不稳定或者计算误差太大的问题.在现有低阶实时龙格-库塔公式基础上,首先利用RK公式的稳定性方程求解出最大稳定域,然后根据截断误差与相关系数的关系,将其化为一个约束求极小最优问题,并最终推导出实时最优三级二阶RK公式和四级三阶RK公式.仿真结果表明,该算法具有一定的优越性.In real-time Runge-Kutta algorithm for control system, for satisfying the quickness need of real-time simulation, it is expect to choose larger integration step-size. However, the larger step-size would result in the unsteadiness of numerical value and larger error in numeration. So, based on the existing low-order real-time RK formula, using the stability equation of RK formula, the maximum stability region is found. Then, at the basis of the relation of truncation error and related coefficients, a problem of restricted optimization for min is gotten, and the real-time optimum third-grade second-order RK formula and fourth-grade third-order RK formula are deduced finally. The simulation results show that this algorithm is superior in a certain extent.
关 键 词:实时仿真 龙格-库塔算法 最优 稳定域 截断误差
分 类 号:O232[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.73.197