检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学土木工程与力学学院 [2]华中科技大学控制工程与科学系,湖北武汉430074
出 处:《华中科技大学学报(自然科学版)》2008年第6期96-99,共4页Journal of Huazhong University of Science and Technology(Natural Science Edition)
基 金:中国科学院武汉岩土力学研究所重点实验室开放课题资助项目(Z110507)
摘 要:将改进的粒子群优化(IPSO)算法与Elman神经网络进行了有机结合,形成了IPSO-Elman混合算法.建立桩筏(箱)基础沉降变形期望输出与超前预测输出之间的非线性隐式方程,避开了复杂的岩土工程本构关系和力学参数计算问题.提出的多步预测控制方法,具有很好的全局识别特点和较高的推广预测能力.工程实例分析表明,IPSO-Elamn算法在桩筏(箱)基础沉降的非线性系统动态辨识和在线预测应用方面,具有良好的预测精度,满足工程实际需要.Based on improved particle swarm optimization (IPSO), and the study of the nonlinear-dynamic identification of Elman neural network, a new algorithm was presented, in which IPSO algorithm was combined with the Elman network. The nonlinear implicit equations were constructed between target and prediction of the settlement of pile-raft (box) foundation. It was proved that this approach can be avoided the complicated structure relation and mechanical parameters in geotechnical engineering. Multi-step predictive method reveals a good characteristic of global optimization and a better performance in prediction. The results of the example show that the method is valuable. It is suitable for dynamic identification of nonlinear system and on-linear prediction. The precision of prediction can meet engineering need.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49