血清蛋白质指纹图谱与人工神经网络模型在肺癌诊断中的应用  被引量:7

Classification and diagnostic prediction of lung cancer using protein profiling of serum and bioinformatics

在线阅读下载全文

作  者:韩明勇[1] 刘奇[1] 余捷凯[2] 郑树[2] 

机构地区:[1]山东大学附属省立医院肿瘤中心,济南250021 [2]浙江大学肿瘤研究所,杭州310009

出  处:《山东大学学报(医学版)》2008年第6期604-607,共4页Journal of Shandong University:Health Sciences

基  金:山东省科技公关项目资助课题(2007GG20002007)

摘  要:目的筛选肺癌相关标志物并建立诊断肺癌的蛋白质谱模型。方法应用表面增强激光解吸电离飞行时间质谱(SELDI-TOF-MS)技术检测了86例肺癌、80例健康对照样本的血清蛋白质质谱,结合人工神经网络建立肺癌诊断模型。结果从肺癌组与健康对照组中筛选出了4个蛋白质荷比峰建立肺癌诊断模型,该诊断模型的特异性为100%(95%的置信区间为93.9%~100.0%),敏感性为93.6%(87.6%-96.4%),准确率为96.7%(88.1%。98.3%)。结论成功建立了肺癌诊断模型,该模型在肺癌的诊断中具有较高的敏感性和特异性。Objective To identify serum biomarkers that distinguish lung cancer from healthy individuals by protein fingerprint pattern. Methods 86 lung cancer patients and 80 healthy controls were determined by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Results 4 protein peaks were selected and used by artificial neural network (ANN) to establish a diagnostic model. The specificity of the diagnostic pattern was 100% and sensitivity of the pattern was 93.6%. Conclusions A diagnostic model of lung cancer was successfully established, which has high sensitivity and specificity.

关 键 词:肺肿瘤 表面增强激光解吸电离飞行时间质谱 生物信息学 诊断 蛋白组学 

分 类 号:R322.81[医药卫生—人体解剖和组织胚胎学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象