检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东大学附属省立医院肿瘤中心,济南250021 [2]浙江大学肿瘤研究所,杭州310009
出 处:《山东大学学报(医学版)》2008年第6期604-607,共4页Journal of Shandong University:Health Sciences
基 金:山东省科技公关项目资助课题(2007GG20002007)
摘 要:目的筛选肺癌相关标志物并建立诊断肺癌的蛋白质谱模型。方法应用表面增强激光解吸电离飞行时间质谱(SELDI-TOF-MS)技术检测了86例肺癌、80例健康对照样本的血清蛋白质质谱,结合人工神经网络建立肺癌诊断模型。结果从肺癌组与健康对照组中筛选出了4个蛋白质荷比峰建立肺癌诊断模型,该诊断模型的特异性为100%(95%的置信区间为93.9%~100.0%),敏感性为93.6%(87.6%-96.4%),准确率为96.7%(88.1%。98.3%)。结论成功建立了肺癌诊断模型,该模型在肺癌的诊断中具有较高的敏感性和特异性。Objective To identify serum biomarkers that distinguish lung cancer from healthy individuals by protein fingerprint pattern. Methods 86 lung cancer patients and 80 healthy controls were determined by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Results 4 protein peaks were selected and used by artificial neural network (ANN) to establish a diagnostic model. The specificity of the diagnostic pattern was 100% and sensitivity of the pattern was 93.6%. Conclusions A diagnostic model of lung cancer was successfully established, which has high sensitivity and specificity.
关 键 词:肺肿瘤 表面增强激光解吸电离飞行时间质谱 生物信息学 诊断 蛋白组学
分 类 号:R322.81[医药卫生—人体解剖和组织胚胎学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200