From the second gradient operator and second class of integral theorems to Gaussian or spherical mapping invariants  被引量:1

From the second gradient operator and second class of integral theorems to Gaussian or spherical mapping invariants

在线阅读下载全文

作  者:殷雅俊 吴继业 黄克智 范钦珊 

机构地区:[1]Department of Engineering Mechanics,School of Aerospace,Tsinghua University [2]Division of Mechanics,Nanjing University of Technology,Nanjing 211816,P.R.China [3]Division of Mechanics,Nanjing University of Technology

出  处:《Applied Mathematics and Mechanics(English Edition)》2008年第7期855-862,共8页应用数学和力学(英文版)

基  金:Project supported by the National Natural Science Foundation of China (No.10572076)

摘  要:By combining of the second gradient operator, the second class of integral theorems, the Gaussian-curvature-based integral theorems and the Gaussian (or spherical) mapping, a series of invariants or geometric conservation quantities under Gaussian (or spherical) mapping are revealed. From these mapping invariants important transformations between original curved surface and the spherical surface are derived. The potential applications of these invariants and transformations to geometry are discussedBy combining of the second gradient operator, the second class of integral theorems, the Gaussian-curvature-based integral theorems and the Gaussian (or spherical) mapping, a series of invariants or geometric conservation quantities under Gaussian (or spherical) mapping are revealed. From these mapping invariants important transformations between original curved surface and the spherical surface are derived. The potential applications of these invariants and transformations to geometry are discussed

关 键 词:the second gradient operator integral theorem Gaussian curvature Gaussian (or spherical) mapping mapping invariant 

分 类 号:O186.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象