水文时间序列解析-集成预测模型研究  

Study on Prediction Model Based on Segregation and Aggregation of Hydrologic Time Series

在线阅读下载全文

作  者:赵长森[1] 夏军[1] 沈冰[2] 张惠潼 孙常磊[4] 侯志强 亚力昆 

机构地区:[1]中国科学院地理科学与资源研究所,北京100101 [2]西安理工大学水利水电学院,西安710048 [3]济南水文水资源勘测局,济南250000 [4]山东省水利勘测设计院,济南250013 [5]潍坊水文水资源勘测局,潍坊261000 [6]新疆和田水文水资源勘测局,和田848000

出  处:《地理科学进展》2008年第3期161-165,共5页Progress in Geography

基  金:国家自然科学基金(40671035,50579063);世界银行贷款项目HTJ1

摘  要:为了克服实际工作中常规预测模型的弊端,本文提出了水文序列解析-集成预测模型(Prediction Model based on Segregation and Aggregation of Hydrological Time Series,PMSAHTS),通过分离水文序列中的趋势信号和周期信号得到消除了人类活动影响的序列纯随机信号,然后通过随机因子预测预报方法(如BP神经网络)使用这些随机信号进行训练和仿真预测,将预测结果与趋势、周期预测结果重新集成,得到水文序列的预测值。将该模型应用到和田子项目区进行年内月平均蒸发量的预测,结果表明,PMSAHTS模型达到了水文情报预报规范的合格要求,可以用于实际预测。To overcome the shortcomings in conventional forecast methods, a new Prediction Model based on Segregation and Aggregation of Hydrological Time Series (PMSAHTS) was put forward. Impacts of human activities on hydrological data sequences were firstly eliminated through segregation of trend and period signals in the data sequences. Secondly, the remaining random sequences were used as inputs to train BP Neutral Network, and then the trained network was used to predict random sequences in the future. Finally, the predicted random sequences were aggregated with the prediction results of trend and period terms. Thus the predicted hydrological sequences were obtained. To demonstrate this model, PMSAHTS was applied to predict the annual month-average evaporation in the Hotan Sub-project Area. It was shown by the results, among all comparisons of predicted values with measured ones, 62.5% of then have a prediction relative error less than 20%, which suggests that the PMSAHTS was qualified for hydrological prediction in practice.

关 键 词:水文序列解析-集成预测模型(PMSAHTS) 周期 趋势 随机 预测 

分 类 号:P334.92[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象