Some results on circular chromatic number of a graph  

图的圆色数的一些结果(英文)

在线阅读下载全文

作  者:吴建专[1] 林文松[1] 

机构地区:[1]东南大学数学系,南京211189

出  处:《Journal of Southeast University(English Edition)》2008年第2期253-256,共4页东南大学学报(英文版)

基  金:The National Natural Science Foundation of China(No.10671033)

摘  要:For two integers k and d with (k, d) = 1 and k≥2d, let G^dk be the graph with vertex set {0,1,…k - 1 } in which ij is an edge if and only if d≤| i -j I|≤k - d. The circular chromatic number χc(G) of a graph G is the minimum of k/d for which G admits a homomorphism to G^dk. The relationship between χc( G- v) and χc (G)is investigated. In particular, the circular chromatic number of G^dk - v for any vertex v is determined. Some graphs withx χc(G - v) =χc(G) - 1 for any vertex v and with certain properties are presented. Some lower bounds for the circular chromatic number of a graph are studied, and a necessary and sufficient condition under which the circular chromatic number of a graph attains the lower bound χ- 1 + 1/α is proved, where χ is the chromatic number of G and a is its independence number.设k和d是2个互素的正整数且k≥2d.Gdk是一个图,它的顶点集合为{0,1,…,k-1},边集合为{ijd≤i-j≤k-d,i,j=0,1,…,k-1}.图G的圆色数χc(G)定义为使得图G与Gkd同态的2个正整数k和d的最小比值k/d.研究了χc(G)和χc(G-v)之间的关系,对任意顶点v求出了χc(Gkd-v)的精确值,给出了具有对任意顶点χc(G-v)=χc(G)-1和其他特定性质的图类;并对图的圆色数的一些下界进行了探讨,给出了图的圆色数达到下界χ-1+1/α的充要条件,这里χ和α分别是图G的点色数和独立数.

关 键 词:(k  d)-coloring r-circular-coloring circular chromatic number Mycielski' s graph 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象