检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学自动化学院,江苏南京210016
出 处:《化工学报》2008年第7期1778-1782,共5页CIESC Journal
基 金:高校博士点基金项目(20070287047);南京航空航天大学科研创新团队项目~~
摘 要:针对间歇过程过渡状态下具有的复杂过程特性,提出一种基于二维动态主成分分析(2DDPCA)的故障诊断方法。该方法将故障信息划分为"批次内"和"批次间"信息,采用变量贡献图方法隔离故障变量,并依据2DDPCA模型支撑区域中故障变量的相关性变化具体分析故障成因。仿真结果验证了该方法的可行性和有效性。Process transition during start-up, shut-down or product changeover is frequently encountered in chemical industry. Processes are more prone to various malfunctions and unknown disturbances during transitions. Fault detection and diagnosis during process transitions is critical to ensure process safety and production capacity. A novel modeling method, two-dimensional dynamic principal component analysis (2DDPCA), was developed for monitoring batch process transition in author's previous work. To follow up, a fault diagnosis method was proposed in this paper. Process characteristics changed by faults were decomposed into "within-batch" and "batch-to-batch" information. Based on this extracted information, contribution plot, associated with the change of fault variables correlation in the optimal region of support, can then be used to isolate and diagnose the abnormal process variables. Simulation results showed the feasibility and validity of the proposed method.
关 键 词:间歇过程 过渡状态 二维动态主成分分析 故障诊断
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置] TQ021.8[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38