检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013
出 处:《计算机工程与设计》2008年第12期3234-3236,共3页Computer Engineering and Design
基 金:国家自然科学基金项目(60572112)
摘 要:针对医学图像数据的特殊性,提出了一种适合挖掘大量医学图像数据的关联分类算法。该算法以频繁模式树为基础,通过引入双支持度,排除一部分对分类无意义且存在干扰的项,以提高分类正确率。实验结果表明,当用于医学图像分类时,该算法可以取得同样的基于关联规则的分类算法CMAR更高的执行效率及更好的分类效果。According to the characteristic ofmedical image dataset, new associative classification algorithm is introduced which suitable for mining huge medical image dataset. The new algorithm is based on FP-growth, which introduce double-support to eliminate items which interfere with classification. The experiments show that when used for medical image classification the method has better efficiency and classification accuracy than other reported associative classification methods.
分 类 号:TP312[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44