Uniform Convergence Analysis for Singularly Perturbed Elliptic Problems with Parabolic Layers  被引量:2

Uniform Convergence Analysis for Singularly Perturbed Elliptic Problems with Parabolic Layers

在线阅读下载全文

作  者:Jichun Li Yitung Chen 

机构地区:[1]Department of Mathematical Sciences, University of Nevada, Las Vegas, Nevada 89154-4020, USA [2]Department of Mechanical Engineering, University of Nevada, Las Vegas, Nevada 89154-4027, USA

出  处:《Numerical Mathematics(Theory,Methods and Applications)》2008年第2期138-149,共12页高等学校计算数学学报(英文版)

摘  要:In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.In this paper,using Lin's integral identity technique,we prove the optimal uniform convergence θ(N_x^(-2)In^2N_x + N_y^(-2)In^2N_y) in the L^2-norm for singularly per- turbed problems with parabolic layers.The error estimate is achieved by bilinear fi- nite elements on a Shishkin type mesh.Here N_x and N_y are the number of elements in the x- and y-directions,respectively.Numerical results are provided supporting our theoretical analysis.

关 键 词:Finite element methods singularly perturbed problems uniformly convergent 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象