Finite-Difference Methods for a Class of Strongly Nonlinear Singular Perturbation Problems  

Finite-Difference Methods for a Class of Strongly Nonlinear Singular Perturbation Problems

在线阅读下载全文

作  者:Relja Vulanovi 

机构地区:[1]Department of Mathematical Sciences Kent State University Stark Campus

出  处:《Numerical Mathematics(Theory,Methods and Applications)》2008年第2期235-244,共10页高等学校计算数学学报(英文版)

摘  要:The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the boundary layers.The Bakhvalov mesh and a special piecewise equidistant mesh are analyzed.For the central scheme,error estimates are derived in a discrete L^1 norm.They are of second order and decrease together with the perturbation parameterε.The fourth-order Numerov scheme and the Shishkin mesh are also tested numerically.Numerical results showε-uniform pointwise convergence on the Bakhvalov and Shishkin meshes.The paper is concerned with strongly nonlinear singularly perturbed boundary value problems in one dimension. The problems are solved numerically by finite-difference schemes on special meshes which are dense in the boundary layers. The Bakhvalov mesh and a special piecewise equidistant mesh are analyzed. For the central scheme, error estimates are derived in a discrete L^1 norm. They are of second order and decrease together with the perturbation parameter ε. The fourth-order Numerov scheme and the Shishkin mesh are also tested numerically. Numerical results show ε-uniform pointwise convergence on the Bakhvalov and Shishkin meshes.

关 键 词:Boundary-value problem singular perturbation finite differences Bakhvalov and piecewise equidistant meshes L^1 stability 

分 类 号:O175.7[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象