检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《光电工程》2008年第7期12-16,共5页Opto-Electronic Engineering
摘 要:针对视频运动目标定位的需要,本文给出了一种新的视频运动目标定位方法。该方法运用减法聚类算法对视频运动目标进行定位。分析了减法聚类算法的原理,给出了减法聚类算法的公式推导,目标定位的实现步骤及流程框图。研究了本文方法对不同类型视频运动目标的定位效果,并与基于区域生长的定位方法进行了详细比较。结合实验数据说明了本文方法的定位过程、处理时间及抗噪性能。实验结果表明,本文方法适用于待定位视频序列二值图像存在较大噪声斑点或空域连通特性较差的场合。In order to meet the needs of moving object location in different video sequences, a novel moving object location method was proposed. Subtractive clustering algorithm was used for object location in video sequences. The theory of subtractive clustering algorithm was analyzed. Equations of subtractive clustering algorithm, software flowchart and realization steps of proposed method were presented. Different location results for different video sequences were studied. Subtractive clustering location algorithm was also compared with region growing location method. The location order, time consuming and its robustness against blob noises of the proposed method were discussed. Experiment results show that the proposed algorithm is fit for video sequences whose binary images have big noise blobs and bad spatial connectivity.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3