检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金菊良[1,2] 杨晓华[1,2] 储开凤 郦建强[1,2]
机构地区:[1]河海大学 [2]南京水文水资源研究所
出 处:《海洋环境科学》1997年第4期7-12,共6页Marine Environmental Science
基 金:国家"九五"攻关课题;中国科学院资源与环境信息系统国家重点实验室资助
摘 要:基于自然选择和自然基因机制的基因算法是一种优秀的寻优方法,它利用遗传操作算子来模拟生物界的优生劣汰的规律,是一种多路径全局优化方法。为增强经典基因算法对实际模型参数变化范围的适应性,加快其全局寻优速度和简化算法参数设置技术,本文给出了一种改进基因算法,并在渤海渔期预报、冰情预报中得到成功应用。该法可广泛用于各种工程模型优化之中。The Genetic Algorithm(GA) is an excellent search procedure based on the mechanics of natural selection and genetics,which combines an artificial survival of the fittest with genetics operators abstracted from ecology.It can search for a global solution using the multiple paths.In this paper,an improved genetic algorithm named accelerative genetic algorithm (AGA) is presented to enhance the adaptability of GA to change range of parameters of practical models to accelerate global optimization and to simplify the configured technique of the parameters of GA.AGA is used very well to optimize the parameters of a model for forecasting fishing period of penaeus prawn in the Bohai Sea during overwintering migration.It was also successfully applied to forecast the interannual sea ice condition.It may be applied to optimize the different engineering models.
分 类 号:X32[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222