检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东师范大学计算机系,济南250014 [2]山东财政学院计算机系,济南250014
出 处:《自动化学报》2008年第7期819-822,共4页Acta Automatica Sinica
基 金:国家自然科学基金(90612003);山东省中青年科学家科研奖励基金(2006BS01020);山东省自然科学基金(Y2007G16)资助~~
摘 要:进化规划中,个体选择变异策略特别重要.适应性变异策略因在进化过程中动态选择个体变异策略,能够取得较好的性能.传统适应性变异策略都依据个体一步进化效果考察个体适应性,没有从多步进化效果上对变异策略进行评价.本文提出一种新的基于Q学习的适应性进化规划算法QEP(Q learning based evolutionary programming),该算法将变异策略看成行动,考察个体多步进化效果,并通过计算Q函数值,学习个体最优变异策略.实验表明,QEP能够获得好的性能.Selection of mutation strategies plays an important role in evolutionary programming, and adaptively selecting a mutation strategy in each evolutionary step can achieve good performance. A mutation strategy is evaluated and selected only based on the one-step performance of mutation operators in classical adaptive evolutionary programming, and the performance of mutation operators in the delayed mutation steps is ignored. This paper proposes a novel adaptive mutation strategy based on Q learning-- QEP (Q learning based evolutionary program- ming). In this algorithm, several candidate mutation operators are used and each is considered as an action. The evolutionary performance of delayed mutation steps is considered in calculating the Q values for each mutation operator and the mutation operator that maximizes the learned Q values is the optimal one. Experimental results show that the proposed mutation strategy achieves better performance than the existing algorithms.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28