基于多模型集的主汽温多模型预测控制方法  被引量:13

Main Steam Temperature Multi-model Prediction and Control Method Based on a Multi-model Set

在线阅读下载全文

作  者:刘吉臻[1] 岳俊红[1] 谭文[1] 

机构地区:[1]华北电力大学自动化系,北京102206

出  处:《热能动力工程》2008年第4期395-398,共4页Journal of Engineering for Thermal Energy and Power

基  金:国家自然科学基金资助项目(50576022)

摘  要:针对一类可以采用一阶惯性加纯滞后模型描述不同工况下动态特性且随工况变化的工业过程,提出一种基于对象特征参数极大极小值的多模型集建立方法,采用递推贝叶斯概率加权方法获得全局预测模型,并以此设计多模型预测控制器以满足工况大范围变化的控制要求,同时在进行误差校正时,预先补偿由于工况动态变化所带来的模型预测误差,以提高预测精度。对电站锅炉主汽温系统的仿真结果表明在各工况下均有很好的定值跟踪能力,在大范围工况变化时,能够将主汽温度稳定在设定值附近。Concerning a kind of industrial processes for which first-order inertia plus a pure lagging model can be used to describe their dynamic characteristics under different operating conditions and which change with operating conditions,a method was presented for setting up a multi-model set based on the maximum and minimum values of the characteristic parameters of an object. A recursive Bayesian probability weighting method was used to obtain an overall predictive model. On this basis,a multi-model predictive controller was designed to meet the control requirement for the operating conditions varying in a wide range. In the meanwhile,when a rectification of errors is being performed,the prediction error of the model resulting from any dynamic change of the operating condition can be compensated in advance to enhance prediction accuracy. The simulation calculation results of a utility boiler main steam temperature system show that the method under discussion enjoys a superior ability to track a set value under various operating conditions. When the operating conditions change in a wide range,it is possible to stabilize the main steam temperature near a set value.

关 键 词:主汽温系统 多模型集 多模型预测控制 贝叶斯概率加权 动态前馈 

分 类 号:TK223.7[动力工程及工程热物理—动力机械及工程] TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象