检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学机械工程学院,江苏南京210094
出 处:《兵工学报》2008年第7期774-780,共7页Acta Armamentarii
摘 要:在测定引信解除保险距离的感度用数理统计试验方法中,兰利法由于理论上可使用较少的试验样本量而应用日渐广泛。利用蒙特卡罗法对引信解除保险距离的兰利法试验进行了计算机模拟计算,结果表明:虽然使用小样本即可实现对解除保险距离50%响应点的准确估计,但对解除保险距离方差的估计却有较大的误差和散布;经模拟计算虽然可以针对统计值得到方差估计值的修正系数,但这样的修正系数对于单次试验却无任何意义;这就意味着用兰利法试验测估引信解除保险距离所得结果会存在较大的误差,并且如果不加修正,则会使测定的解除保险距离上限偏短而下限偏长。In mathematically statistical test methods that were used to get arming distance of fuze, Langlie method was applied more and more wider because it only uses a few samples. Langlie method test of fuze arming distance was simulated and calculated with Mote-Carlo method. Its result shows that the estimate of 50 % response level of stimulus for arming distance can be got through using a little sample, but the error and scatter to estimate of variance for arming distance is large; the amending coefficient to estimate of variance can be got through simulating and calculating, but it is useless to the certain single test; this means that the estimated arming distance of fuze by the langlie method test has large error, and the maximum of arming distance becomes shorter and the minimum of that becomes longer without amending.
关 键 词:机械设计 数理统计学 兰利法 蒙特卡罗法 引信 解除保险距离 计算机仿真
分 类 号:TJ430.1[兵器科学与技术—火炮、自动武器与弹药工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.154.6