Development of a non-cable whole tectorial membrane micro-robot for an endoscope  被引量:2

Development of a non-cable whole tectorial membrane micro-robot for an endoscope

在线阅读下载全文

作  者:Dong-dong YE Guo-zheng YAN Kun-dong WANG Guan-ying MA 

机构地区:[1]Department of Instrument, Shanghai Jiao Tong University, Shanghai 200240, China

出  处:《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》2008年第8期1141-1149,共9页浙江大学学报(英文版)A辑(应用物理与工程)

基  金:Project (No. 2007AA04Z234) supported by the Hi-Tech Researchand Development Program (863) of China

摘  要:A novel non-cable whole tectorial membrane micro-robot for an endoscope is developed. The micro-robot we have fabricated and tested can propel itself in the intestine tract of a pig in an autonomous manner by earthworm-like locomotion. The silicone of bellow shape is laid over the outer surface of the micro-robot to reduce the affection of the viscoelastic properties of the intestine. Wireless power transfer and communication systems are employed to realize the non-cable locomotion of the mi-cro-robot. The prototype of the micro-robot is 13.5 mm in diameter and 108 mm in length. The experimental results show that the towing force for the micro-robot is about 0.8 N, which is much smaller than the maximum driving force 2.55 N of the linear actuator. The supplying power of the wireless power transfer system fulfills the needs of the micro-robot system and the mi-cro-robot can creep reliably in the large intestine of a pig and other contact environments.A novel non-cable whole tectorial membrane micro-robot for an endoscope is developed. The micro-robot we have fabricated and tested can propel itself in the intestine tract of a pig in an autonomous manner by earthworm-like locomotion. The silicone of bellow shape is laid over the outer surface of the micro-robot to reduce the affection of the viscoelastic properties of the intestine. Wireless power transfer and communication systems are employed to realize the non-cable locomotion of the micro-robot. The prototype of the micro-robot is 13.5 mm in diameter and 108 mm in length. The experimental results show that the towing force for the micro-robot is about 0.8 N, which is much smaller than the maximum driving force 2.55 N of the linear actuator. The supplying power of the wireless power transfer system fulfills the needs of the micro-robot system and the micro-robot can creep reliably in the large intestine of a pig and other contact environments.

关 键 词:Micro-robot ENDOSCOPE Intestine tract Silicone of bellow shape Linear actuator Wireless power 

分 类 号:TP242.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象