BP网络日径流序列预测的NLP适用条件研究  被引量:1

Adaptivity of NLP in daily runoff prediction with BP ANN

在线阅读下载全文

作  者:邓红霞[1] 李存军[2] 孙熠[3] 刘政[3] 

机构地区:[1]四川省紫坪铺开发有限责任公司,四川成都610091 [2]四川大学建环学院,四川成都610065 [3]四川大学水电学院,四川成都610065

出  处:《中国水利水电科学研究院学报》2008年第2期100-104,共5页Journal of China Institute of Water Resources and Hydropower Research

基  金:四川大学青年教师科学基金(06016);四川交通职业技术学院2007科研项目(2007-170-07;2007-580-08)

摘  要:对非线性预处理在人工神经网络日径流预测中的适应过程进行了仿真和模拟.提出了非线性预处理(NLP)适用条件的解算思路,通过实测数据和模拟数据,研究了NLP的适用条件。推导出NLP在神经网络SISO系统中适合于日径流预测,不适用于周平均流量序列、旬平均流量序列和月平均流量序列的预测,提出了判断NLP神经网络SISO系统进行日径流预测的有效性标准——多年日径流拐点14百分位.并通过广西平乐水文站和四川宝珠寺水文站1973~2001年的日径流量进行对比预测,验证了该标准是合理的。This paper simulated the adaptation process of non-linear prediction (NLP) in Back Propagation(BP) Artificial Neutral Network (ANN) for daily runoff prediction, and proposed the calculation approach of adapting condition of NLP. It was deduced that the NLP can well run in Single Input Single Output (SISO) mode for daily runoff prediction, but would become void for predicting weekly-mean runoff, 10-day mean runoff and monthly mean runoff through measured and simulated data. The authors proposed that the forecasting validity standard for prediction of other rivers by NLP in SISO ANN would be the inflexion position of 14 percent of multi-year mean daily runoff. This paper examined the standard by predicting and comparing of daily runoff during 1973 through 2001 at Pingle station in Guangxi province and Baozhusi station in Sichuan province. The results show that it is rational.

关 键 词:水文预测 非线性预处理 适用条件 神经网络 

分 类 号:P333[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象