检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学自动化学院,江苏南京210016
出 处:《电声技术》2008年第8期64-67,71,共5页Audio Engineering
摘 要:目前的语音端点检测算法大多不能适应背景噪声实时变化情况。针对这一问题,首先给出1个代表噪声变化的参数——最小Mel频带参数(MiMSB);然后给出改进的时频参数(TF)——增强时频参数(ETF),用于区分语音信号与噪声;最后基于这2个参数提出一种变噪声环境下的端点检测算法。实验证明,该算法在各种噪声环境下均能取得很好的性能。Many boundary detection algorithms, which focus only on the fixed background noise and high signalto-noise ratio, are proposed, but most of them cannot work well in the condition of the variable background noise. To solve this problem, MiMSB (Minimum Mel-Scale Frequency Band) parameter which can estimate the varying background noise level by adaptively choosing one band with minimum energy from the Mel-scale frequency band is proposed. Then, ETF(Enhanced Time-Frequency) parameter by extending TF(Time-Frequency) parameter from single band to multi-band spectrum analysis is proposed, where the frequency bands help to make the distinction between speech signal and noise. Based on the MiMSB and ETF parameters, a new algorithm for word boundary detection in variable noise environment is given. The new algorithm is tested over a variety of noise conditions and is found to perform well not only under variable background noise, but also under fixed background noise.
关 键 词:语音识别 端点检测 最小美尔频带参数 增强时频参数
分 类 号:TP391.42[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.241.211