基于熵图像和隶属度图的高斯混合背景模型  被引量:2

Gaussian Mixture Background Model Based on Entropy Image and Membership-Degree-Image

在线阅读下载全文

作  者:左军毅[1] 梁彦[1] 赵春晖[1] 潘泉[1] 程咏梅[1] 张洪才[1] 

机构地区:[1]西北工业大学自动化学院,西安710072

出  处:《电子与信息学报》2008年第8期1918-1922,共5页Journal of Electronics & Information Technology

基  金:国家自然科学基金重点项目(60634030);国家自然科学基金(60372085)资助课题

摘  要:经典的高斯混合背景模型中,高斯分量的个数是固定的,近邻像素间的相关性也没有被考虑。作为对这种模型的改进,该文利用熵图像来度量背景像素亮度分布的复杂程度,进而给出了根据熵图像为各像素选择高斯函数个数的方法,在保证检测精度的前提下节约计算资源;并利用隶属度来表示像素属于背景的可能性,通过融合各像素邻域的局部信息来对其进行有效的分类,使得分类决策的结果更可靠,而计算量却增加不多。多种真实场景下的实验证明了这种算法在计算速度和精度上的良好性能。The number of Gaussian component is fixed and correlativity of class label between adjacent pixels is not considered in classical Gaussian mixture background model. As an improved version of the model, the main contribution of this paper is twofold. The first is to construct entropy image to measure the complexity of pixel's intensity distribution, and further present the adaptation mechanism for automatically choosing the component number of Gaussian mixture model for each pixel according to entropy image so that the computational cost can be reduced without significantly sacrificing detection accuracy. The other is to use the membership degree to measure the degree that one pixel belongs to the background, and further fusion the local information within its adjacent region for effective pixel classification so that the classification decision becomes more reliable without significantly increasing the computation load. Experiments conducted on various real scenes demonstrate the good performance in computational speed and accuracy.

关 键 词:运动目标检测 背景建模 熵图像 高斯混合模型 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象