出 处:《Plasma Science and Technology》2008年第4期446-449,共4页等离子体科学和技术(英文版)
基 金:Program for New Century Excellent Talents in University (NCET) of China;Fundation of the Key Lab of Infrared and Low Temperature Plasma of Anhui Province of China(No.2007A003003U)
摘 要:Abstract In the four-anode device, the mirror magnetic field affects the characteristics of charged particles motion, so that the current-voltage relations of glow discharge are changed. Firstly, the discharge device is introduced, and the distribution of mirror magnetic field generated by the loops surrounding the discharge chamber is presented. Both the discharge current-voltage characteristics and the radial distributions of electron density are measured, respectively, with/without the magnetic field. When the discharge occurs in a 99.99% helium with a pressure ranging from 100 Pa to 800 Pa without magnetic field, the voltage, sustaining a certain abnormal glow discharge current, decreases with the increase in gas pressure. With a mirror magnetic field of certain intensity, the discharge voltage increases with the current in a rate slower than that without the magnetic field. Moreover, when the magnetic field intensity increases, the discharge voltage first decreases then increases. Simultaneously, the mirror magnetic field affects the moving characteristics of charged particles, and causes a more inhomogeneous electron density.Abstract In the four-anode device, the mirror magnetic field affects the characteristics of charged particles motion, so that the current-voltage relations of glow discharge are changed. Firstly, the discharge device is introduced, and the distribution of mirror magnetic field generated by the loops surrounding the discharge chamber is presented. Both the discharge current-voltage characteristics and the radial distributions of electron density are measured, respectively, with/without the magnetic field. When the discharge occurs in a 99.99% helium with a pressure ranging from 100 Pa to 800 Pa without magnetic field, the voltage, sustaining a certain abnormal glow discharge current, decreases with the increase in gas pressure. With a mirror magnetic field of certain intensity, the discharge voltage increases with the current in a rate slower than that without the magnetic field. Moreover, when the magnetic field intensity increases, the discharge voltage first decreases then increases. Simultaneously, the mirror magnetic field affects the moving characteristics of charged particles, and causes a more inhomogeneous electron density.
关 键 词:current-voltage relations abnormal glow discharge four-anode device mirror magnetic field
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...