检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军工程大学工程学院,陕西西安710038 [2]空军工程大学导弹学院,陕西三原713800
出 处:《空军工程大学学报(自然科学版)》2008年第4期1-5,共5页Journal of Air Force Engineering University(Natural Science Edition)
基 金:国家自然科学基金资助项目(60601016)
摘 要:纯方位系统的可观测性,是指系统在纯方位观察条件下,能唯一的求解目标的运动参数。针对三维空间作匀速直线运动的目标,首先建立了观测器与目标之间的矢量图形以及矢量方程;并通过解矢量方程转化为对观测矩阵的分析,最后利用克莱姆法则以及矩阵秩的概念对纯方位系统跟踪的可观测性问题进行了讨论,得到了观测器在匀速直线运动以及匀加速直线运动情况下的观测性结论:匀速直线运动观测器的观测指数恒为常数,目标是不可观测的;匀加速直线运动观测器的观测指数非常数时,目标是可观测的。文中采用的研究方法在机载纯方位目标运动状态的观测性分析中是可行的,对观测载机优化轨迹的生成具有一定的指导意义。A bearings -only system is considered to be observable if, and only if, the target motion parameters can be uniquely determined by bearings - only observations. The problem of observability for bearings - only target location is discussed in this paper based on the target traveling in the three -dimensional space at a uniform velocity. The vector - graph between target and observer is drawn and vector equations are founded, by utilizing Gramme rule and rank of matrix, the observability of the observer with a uniform velocity and a uniform acceleration is obtained. It is shown that the target is unobservable toward observer with a uniform velocity as the observability index is a constant; the target is observable if the observability index is not a constant toward observer with a uniform acceleration. The study done in this paper is valuable to solving the bearings - only target observability analysis and it is of constructive sense to producing optimal trajectory of the observer.
分 类 号:TN953[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3