检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李中凯[1] 谭建荣[1] 冯毅雄[1] 高一聪[1]
机构地区:[1]浙江大学CAD&CG国家重点实验室,浙江杭州310027
出 处:《计算机集成制造系统》2008年第8期1457-1465,共9页Computer Integrated Manufacturing Systems
基 金:国家863/CIMS主题资助项目(2008AA042301;2007AA04Z190);国家自然科学基金资助项目(60573175);国家科技支撑计划资助项目(2006BAF01A37)~~
摘 要:针对产品族设计中平台通用性与实例产品性能的平衡问题,在分析可调节平台产品开发特点的基础上,基于多平台产品族设计空间的二维染色体表达方式,提出了混合协同进化的产品族优化设计方法。将通用性与设计变量种群的进化分别放入主-附两个相关过程,主过程使用第二代非支配排序遗传算法求解平台通用性与产品性能的Pareto前沿,附过程使用粒子群优化算法,以并行方式搜索每个通用性等级下满足约束的产品族优化方案,避免了两类种群同步进化带来的数据扰动问题。通用性种群对设计变量种群施加约束,保证二者变量共享的一致性。通过单相异步电动机产品族优化设计实例,验证了优化方法与算法的有效性。To deal with the tradeoff between platform commonality and instance products performances in product family design, characteristics of products using scalable platform development strategy were analyzed. Then, based on the two-dimensional chromosome representation scheme of multi-platform design space, a hybrid co-evolutionary optimization method for scale-based product family was proposed. Evolutions of commonality and design variable populations were run in relevant master-slave processes. The Pareto front between commonality and performance was calculated by Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) in the master process. And the product family variable configuration under each commonality level was optimized by Particle Swarm Optimization (PSO) algorithm in parallel in the slave process so as to avoid the data disturbance in synchronous evolution. Constraints were exerted on all variable swarms by the commonality population to guarantee the parameters sharing consistency. Finally, the feasibility and effectiveness of proposed approach were demonstrated by a case of optimizing a family of three capacitor-run single-phase induction motors.
关 键 词:产品开发 产品平台 产品族 平台通用性 混合协同进化算法 异步电动机
分 类 号:TH45[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229