基于CA-CMAC的快速传感器故障诊断方法  被引量:8

Fast Sensor Fault Diagnosis Method Based on CA-CMAC

在线阅读下载全文

作  者:朱大奇[1] 陈楚瑶[1] 颜明重[1] 

机构地区:[1]上海海事大学信息工程学院,上海200135

出  处:《电子学报》2008年第8期1646-1650,共5页Acta Electronica Sinica

基  金:国家863高技术研究发展计划(No.2006AA09Z210);国家自然科学基金(No.50775136);上海市自然科学基金(No.07ZR14045)

摘  要:针对动态系统的在线故障诊断问题,将信度分配小脑神经网络CA-CMAC(Credit Assigned Cerebellar Mod-el Articulation Controller)应用于主元分析模型,实现多传感器在线故障检测与隔离.首先,应用传感器正常工作时测量的历史数据,由主元分析模型得到所有传感器的预测值;接着计算传感器系统的均方预期误差值SPE(Squared Predic-tion Error),由SPE值的变化,判定是否发生故障,根据重构单个传感器信号的SPE值来隔离故障传感器;最后应用一个多传感器故障诊断仿真实例说明了该算法的可行性,并通过与误差反传BP(Back Propagation)神经网络和常规小脑神经网络CMAC(Cerebellar Model Articulation Controller)进行比较,说明了基于CA-CMAC的主元分析模型的优越性.For the problem of fault diagnosis in dynamic system, a principal component analysis model based on credit assigned cerebellar model articulation controller is proposed to carry out on-line fault detection and isolation for multiple sensor system.Firstly,the forecasting values of sensors are available from historical data measured in fault-free condition based on principal component analysis model.Secondly,the Squared Prediction Error of the system is calculated,the fault occurred when the SPE is suddenly increased. Sensor values are reconstructed respectively to newly calculate the SPE to locate the faulty sensor. Finally, Compared to BP and CMAC,the method proposed is proved feasible and effective by a simulation of multiple sensor fault diagnosis.

关 键 词:主元分析 故障检测 故障隔离 信号重构 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP274[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象