检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电子学报》2008年第8期1646-1650,共5页Acta Electronica Sinica
基 金:国家863高技术研究发展计划(No.2006AA09Z210);国家自然科学基金(No.50775136);上海市自然科学基金(No.07ZR14045)
摘 要:针对动态系统的在线故障诊断问题,将信度分配小脑神经网络CA-CMAC(Credit Assigned Cerebellar Mod-el Articulation Controller)应用于主元分析模型,实现多传感器在线故障检测与隔离.首先,应用传感器正常工作时测量的历史数据,由主元分析模型得到所有传感器的预测值;接着计算传感器系统的均方预期误差值SPE(Squared Predic-tion Error),由SPE值的变化,判定是否发生故障,根据重构单个传感器信号的SPE值来隔离故障传感器;最后应用一个多传感器故障诊断仿真实例说明了该算法的可行性,并通过与误差反传BP(Back Propagation)神经网络和常规小脑神经网络CMAC(Cerebellar Model Articulation Controller)进行比较,说明了基于CA-CMAC的主元分析模型的优越性.For the problem of fault diagnosis in dynamic system, a principal component analysis model based on credit assigned cerebellar model articulation controller is proposed to carry out on-line fault detection and isolation for multiple sensor system.Firstly,the forecasting values of sensors are available from historical data measured in fault-free condition based on principal component analysis model.Secondly,the Squared Prediction Error of the system is calculated,the fault occurred when the SPE is suddenly increased. Sensor values are reconstructed respectively to newly calculate the SPE to locate the faulty sensor. Finally, Compared to BP and CMAC,the method proposed is proved feasible and effective by a simulation of multiple sensor fault diagnosis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222