检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zheng-ping Wang Huan-song Zhou
出 处:《Acta Mathematicae Applicatae Sinica》2008年第3期473-482,共10页应用数学学报(英文版)
基 金:the National Natural Science Foundation of China(No.10571174,10631030);Chinese Academy oF Sciences grant KJCX3-SYW-S03.
摘 要:Consider the following Neumann problem d△u- u + k(x)u^p = 0 and u 〉 0 in B1, δu/δv =0 on OB1,where d 〉 0, B1 is the unit ball in R^N, k(x) = k(|x|) ≠ 0 is nonnegative and in C(-↑B1), 1 〈 p 〈 N+2/N-2 with N≥ 3. It was shown in [2] that, for any d 〉 0, problem (*) has no nonconstant radially symmetric least energy solution if k(x) ≡ 1. By an implicit function theorem we prove that there is d0 〉 0 such that (*) has a unique radially symmetric least energy solution if d 〉 d0, this solution is constant if k(x) ≡ 1 and nonconstant if k(x) ≠ 1. In particular, for k(x) ≡ 1, do can be expressed explicitly.Consider the following Neumann problem d△u- u + k(x)u^p = 0 and u 〉 0 in B1, δu/δv =0 on OB1,where d 〉 0, B1 is the unit ball in R^N, k(x) = k(|x|) ≠ 0 is nonnegative and in C(-↑B1), 1 〈 p 〈 N+2/N-2 with N≥ 3. It was shown in [2] that, for any d 〉 0, problem (*) has no nonconstant radially symmetric least energy solution if k(x) ≡ 1. By an implicit function theorem we prove that there is d0 〉 0 such that (*) has a unique radially symmetric least energy solution if d 〉 d0, this solution is constant if k(x) ≡ 1 and nonconstant if k(x) ≠ 1. In particular, for k(x) ≡ 1, do can be expressed explicitly.
关 键 词:Implicit function theorem least energy solution radial symmetry Neumann problem ELLIPTIC
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7