Boundary Layer to a System of Viscous Hyperbolic Conservation Laws  

Boundary Layer to a System of Viscous Hyperbolic Conservation Laws

在线阅读下载全文

作  者:Xiao-hong Qin 

机构地区:[1]Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China

出  处:《Acta Mathematicae Applicatae Sinica》2008年第3期523-528,共6页应用数学学报(英文版)

基  金:the National Natural Science Foundation of China(No.10676037)

摘  要:In this paper, we investigate the large-time behavior of solutions to the initial-boundary value problem for n × n hyperbolic system of conservation laws with artificial viscosity in the half line (0, ∞). We first show that a boundary layer exists if the corresponding hyperbolic part contains at least one characteristic field with negative propagation speed. We further show that such boundary layer is nonlinearly stable under small initial perturbation. The proofs are given by an elementary energy method.In this paper, we investigate the large-time behavior of solutions to the initial-boundary value problem for n × n hyperbolic system of conservation laws with artificial viscosity in the half line (0, ∞). We first show that a boundary layer exists if the corresponding hyperbolic part contains at least one characteristic field with negative propagation speed. We further show that such boundary layer is nonlinearly stable under small initial perturbation. The proofs are given by an elementary energy method.

关 键 词:Viscous hyperbolic conservation laws boundary layer asymptotic stability 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象