检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHENG Cuihong ZHU Weichang WANG Lu
出 处:《Rare Metals》2008年第4期354-357,共4页稀有金属(英文版)
基 金:the Natural Science Foundation of Anhui Province, China (No. 2006KJ033B)
摘 要:A modified solid-state route was attempted to prepare Y0.95 Eu0.05PO4 PDP phosphor, involving milling a powdered mixture of YCl3, EuCl3, and (NH4)2HPO4 and calcining the milling-derived precursor. The thermal decomposition behavior of the milling-derived precursor was investigated by thermogravimetric analysis (TGA). Phase compositions, morphologies, and luminescence properties of the prepared phosphor powder were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and vacuum ultraviolet (VUV) emission spectra, respectively. The results indicated that the Y0.95Eu0.05PO4 phosphor powder obtained at a calcination temperature of 900℃ was xenotime-structured. The phosphor powder particles were uniform and spherical-shaped with a primary particle size of-200 um. In comparison with that derived by the conventional solid-state route, the phosphor powder prepared by the modified solid-state route exhibited a higher color purity, presenting a predominant emission peak at 619 nm under 147 um VUV excitation.A modified solid-state route was attempted to prepare Y0.95 Eu0.05PO4 PDP phosphor, involving milling a powdered mixture of YCl3, EuCl3, and (NH4)2HPO4 and calcining the milling-derived precursor. The thermal decomposition behavior of the milling-derived precursor was investigated by thermogravimetric analysis (TGA). Phase compositions, morphologies, and luminescence properties of the prepared phosphor powder were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and vacuum ultraviolet (VUV) emission spectra, respectively. The results indicated that the Y0.95Eu0.05PO4 phosphor powder obtained at a calcination temperature of 900℃ was xenotime-structured. The phosphor powder particles were uniform and spherical-shaped with a primary particle size of-200 um. In comparison with that derived by the conventional solid-state route, the phosphor powder prepared by the modified solid-state route exhibited a higher color purity, presenting a predominant emission peak at 619 nm under 147 um VUV excitation.
关 键 词:PHOSPHOR luminescence properties vacuum ultraviolet solid-state reaction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.100.57