VUV luminescence properties of Y_(0.95)Eu_(0.05)PO_4 phosphor derived by a modified solid-state route  被引量:1

VUV luminescence properties of Y_(0.95)Eu_(0.05)PO_4 phosphor derived by a modified solid-state route

在线阅读下载全文

作  者:ZHENG Cuihong ZHU Weichang WANG Lu 

机构地区:[1]School of Materials Science and Engineering, and Anhui Key Laboratory of Metal Materials and Processing, Anhui University of Technology, Ma 'anshan 243002, China

出  处:《Rare Metals》2008年第4期354-357,共4页稀有金属(英文版)

基  金:the Natural Science Foundation of Anhui Province, China (No. 2006KJ033B)

摘  要:A modified solid-state route was attempted to prepare Y0.95 Eu0.05PO4 PDP phosphor, involving milling a powdered mixture of YCl3, EuCl3, and (NH4)2HPO4 and calcining the milling-derived precursor. The thermal decomposition behavior of the milling-derived precursor was investigated by thermogravimetric analysis (TGA). Phase compositions, morphologies, and luminescence properties of the prepared phosphor powder were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and vacuum ultraviolet (VUV) emission spectra, respectively. The results indicated that the Y0.95Eu0.05PO4 phosphor powder obtained at a calcination temperature of 900℃ was xenotime-structured. The phosphor powder particles were uniform and spherical-shaped with a primary particle size of-200 um. In comparison with that derived by the conventional solid-state route, the phosphor powder prepared by the modified solid-state route exhibited a higher color purity, presenting a predominant emission peak at 619 nm under 147 um VUV excitation.A modified solid-state route was attempted to prepare Y0.95 Eu0.05PO4 PDP phosphor, involving milling a powdered mixture of YCl3, EuCl3, and (NH4)2HPO4 and calcining the milling-derived precursor. The thermal decomposition behavior of the milling-derived precursor was investigated by thermogravimetric analysis (TGA). Phase compositions, morphologies, and luminescence properties of the prepared phosphor powder were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and vacuum ultraviolet (VUV) emission spectra, respectively. The results indicated that the Y0.95Eu0.05PO4 phosphor powder obtained at a calcination temperature of 900℃ was xenotime-structured. The phosphor powder particles were uniform and spherical-shaped with a primary particle size of-200 um. In comparison with that derived by the conventional solid-state route, the phosphor powder prepared by the modified solid-state route exhibited a higher color purity, presenting a predominant emission peak at 619 nm under 147 um VUV excitation.

关 键 词:PHOSPHOR luminescence properties vacuum ultraviolet solid-state reaction 

分 类 号:O43[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象