Lipschitz Algebras and Peripherally-multiplicative Maps  

Lipschitz Algebras and Peripherally-multiplicative Maps

在线阅读下载全文

作  者:A.JIM■NEZ-VARGAS Moisés VILLEGAS-VALLECILLOS 

机构地区:[1]Departamento de■lgebray Análisis Matemático,Universidad de Almería,04071,Almería,Spain

出  处:《Acta Mathematica Sinica,English Series》2008年第8期1233-1242,共10页数学学报(英文版)

基  金:MEC project MTM2006-4837;Junta de Andalucia projects P06-FQM-1215 and P06-FQM-1438

摘  要:Let X be a compact metric space and let Lip(X) be the Banach algebra of all scalar- valued Lipschitz functions on X, endowed with a natural norm. For each f ∈ Lip(X), σπ(f) denotes the peripheral spectrum of f. We state that any map Φ from Lip(X) onto Lip(Y) which preserves multiplicatively the peripheral spectrum: σπ(Φ(f)Φ(g)) = σπ(fg), A↓f, g ∈ Lip(X) is a weighted composition operator of the form Φ(f) = τ· (f °φ) for all f ∈ Lip(X), where τ : Y → {-1, 1} is a Lipschitz function and φ : Y→ X is a Lipschitz homeomorphism. As a consequence of this result, any multiplicatively spectrum-preserving surjective map between Lip(X)-algebras is of the form above.Let X be a compact metric space and let Lip(X) be the Banach algebra of all scalar- valued Lipschitz functions on X, endowed with a natural norm. For each f ∈ Lip(X), σπ(f) denotes the peripheral spectrum of f. We state that any map Φ from Lip(X) onto Lip(Y) which preserves multiplicatively the peripheral spectrum: σπ(Φ(f)Φ(g)) = σπ(fg), A↓f, g ∈ Lip(X) is a weighted composition operator of the form Φ(f) = τ· (f °φ) for all f ∈ Lip(X), where τ : Y → {-1, 1} is a Lipschitz function and φ : Y→ X is a Lipschitz homeomorphism. As a consequence of this result, any multiplicatively spectrum-preserving surjective map between Lip(X)-algebras is of the form above.

关 键 词:Lipschitz algebra peripherally-multiplicative map spectrum-preserving map peaking function peripheral spectrum 

分 类 号:O152.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象