检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Da Chuan XU Zheng Hai HUANG
机构地区:[1]Department of Applied Mathematics, College of Applied Sciences, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100022, P. R. China [2]Department of Mathematics, School of Science, Tianjin University, Tianjin 300072, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2008年第8期1279-1290,共12页数学学报(英文版)
基 金:NsF of China (Grant No.60773185,10401038);Program for Beijing Excellent Talents and NSF of China (Grant No.10571134);the Natural Science Foundation of Tianjin (Grant No.07JCYBJC05200)
摘 要:In this paper, we discuss complex convex quadratically constrained optimization with uncertain data. Using S-Lemma, we show that the robust counterpart of complex convex quadratically constrained optimization with ellipsoidal or intersection-of-two-ellipsoids uncertainty set leads to a complex semidefinite program. By exploring the approximate S-Lemma, we give a complex semidefinite program which approximates the NP-hard robust counterpart of complex convex quadratic optimization with intersection-of-ellipsoids uncertainty set.In this paper, we discuss complex convex quadratically constrained optimization with uncertain data. Using S-Lemma, we show that the robust counterpart of complex convex quadratically constrained optimization with ellipsoidal or intersection-of-two-ellipsoids uncertainty set leads to a complex semidefinite program. By exploring the approximate S-Lemma, we give a complex semidefinite program which approximates the NP-hard robust counterpart of complex convex quadratic optimization with intersection-of-ellipsoids uncertainty set.
关 键 词:robust optimization quadratically constrained program complex semidefinite program S-Lemma
分 类 号:O224[理学—运筹学与控制论] TP301[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.67.167