检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Guang Shi LU Xian Meng MENG
机构地区:[1]Department of Mathematics, Shandong University, Ji'nan 250100, P. R. China [2]Department of Statistics and Mathematics, Shandong Finance Institute, Ji'nan 250014, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2008年第8期1291-1302,共12页数学学报(英文版)
基 金:the National Natural Science Foundation of China (Grant No.10701048)
摘 要:In this paper, we prove that each sufficiently large integer N ≠1(mod 3) can be written as N=p+p1^2+p2^2+p3^2+p4^2, with|p-N/5|≤U,|pj-√N/5|≤U,j=1,2,3,4,where U=N^2/20+c and p,pj are primes.In this paper, we prove that each sufficiently large integer N ≠1(mod 3) can be written as N=p+p1^2+p2^2+p3^2+p4^2, with|p-N/5|≤U,|pj-√N/5|≤U,j=1,2,3,4,where U=N^2/20+c and p,pj are primes.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.244.250