检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学建筑工程学院,天津300072 [2]天津德赛船舶海洋工程技术有限公司,天津300451
出 处:《天津大学学报》2008年第9期1041-1045,共5页Journal of Tianjin University(Science and Technology)
基 金:国家自然科学基金资助项目(50679053)
摘 要:在一维非恒定非均匀泥沙数学模型研究的基础上,提出了可以模拟横向冲淤变形以及河宽变化的准二维非恒定非均匀泥沙数学模型.将横断面沿河道流向分成若干个流管,对每个流管利用非耦合法分别求解水流方程和泥沙方程.运用Preissmann四点偏心隐式格式对水流连续方程和运动方程进行离散,并用追赶法求解.采用迎风格式将悬移质连续方程离散成差分方程求解.根据最小能耗率原理,判别河床冲淤变化方向,以确定河宽是否变化.该模型弥补了以往大多数准二维泥沙数学模型只能按等流量划分流管,且只能模拟恒定流、均匀沙、固定河宽情况下的河床冲淤变化的缺陷.利用青铜峡水库实测的水沙资料,对所建立的模型进行了验证,计算结果与实测值吻合良好.On the basis of 1-D mathematical model for nonuniform sediment transport in unsteady flow, a quasi-2D mathematical model for nonuniform sediment transport in unsteady flowwas set up to simulate transverse lateral deformation of erosion or deposition and change of river width. Following the flow direction of channel, transverse section of the channel was divided into several stream tubes. Then the 1-D mathematical model was used in every tube. The flow equations were differenced by Preissmann scheme, and the difference equations were solved with pursuit method. The continuity equation of suspended load was solved by up-wind difference scheme. The theory of minimum rate of energy dissipation was introduced to the model to judge change of river width. Previous quasi-2D models can only divide the tubes according to uniform discharge and simulate the deformation of erosion or deposition of uniform sediment transport in steady flow in the river with fixed width. This model makes up these limitations. The model was verified by the measured water and sand data of Qingtongxia reservoir, and calculated results were in good agreement with measured values.
分 类 号:TV147.3[水利工程—水力学及河流动力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.36