检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王炯琦[1] 周海银[1] 赵德勇[2] 吴翊[1]
机构地区:[1]国防科技大学数学与系统科学系,湖南长沙410073 [2]国防科技大学信息系统与管理学院,湖南长沙410083
出 处:《系统工程与电子技术》2008年第8期1415-1420,共6页Systems Engineering and Electronics
摘 要:给出了标准多传感器观测信息的统一融合模型,在此基础上分析了传感器观测系统参数对最优融合估计性能的影响。针对存在量测系统误差的非标准多传感器融合系统,构建了一种有效的系统误差参数估计模型。此外对传感器间具有不同非线性误差成份的融合系统,提出了一种基于互迭代自适应半参数的状态融合估计算法。该算法通过对非标准多传感器融合模型误差的补偿,利用线性和非线性迭代的方法来提取非线性因素,进而确定状态的最优融合估计。给出了应用该算法的具体步骤,并通过理论分析与仿真实验证明了该算法的有效性。A unified linear fusion model of observation information with standard multi-sensor systems is presented, and then the relationship between the observation system parameters of sensors and the performance of optimal fusion estimation is analysed. For the nonstandard multi-sensor fusion system with observation sys- tem error, an effective observation system error parameters estimation model is established. Moreover for the fusion system with different nonlinear error factors among sensors, a new state fusion estimation algorithm based on alternant iterative and adaptive semiparametric regression model is introduced, which adopts frequency analysis to compensate the model error in nonstandard multi-sensor fusion system, and then extracts its nonlin- ear factor by the iteration with linear and nonlinear. The relevant steps to apply this algorithm are advanced. Fi- nally, the method is validated with theory analysis and simulation experiment, and the comparative results show that the proposed algorithm is more effective.
关 键 词:信息融合 最优估计 半参数回归 非线性因素 系统误差 融合性能
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3