基于微悬壁梁结构及抗体-微磁球技术的生化免疫传感器的设计与优化(英文)  

Design and Optimization of Micro-cantilever-based and Magnetic Bead-based Immunosensor

在线阅读下载全文

作  者:高鹏[1] 姚素英[1] 常津[2] 李二茂[1] 李双燕[2] 

机构地区:[1]天津大学电子信息工程学院,天津300072 [2]天津大学材料科学与工程学院纳米生物技术研究所,天津300072

出  处:《南开大学学报(自然科学版)》2008年第4期13-20,25,共9页Acta Scientiarum Naturalium Universitatis Nankaiensis

基  金:The Important Natural Science Foundation of Tianjin(07JCZDJC10400)

摘  要:针对能从大量待检测的生物分子群中,高分辨性及量化检测出某种特异性生物分子的新型免疫传感器的研制,采用有限元分析方法及完整的理论数学模型,设计仿真出这种基于悬壁梁结构及抗体-微磁球技术的新型生化免疫传感器,同时实现传感器的可复用性.特别是,此种免疫传感器很容易通过微细加工技术进行批量生产.执行控制电路、读出电路及传感器利用CMOS技术集成在同一芯片上,实现片上集成微系统.针对U型悬壁梁的结构进行了优化设计,结合经典力学的悬壁梁静态应力分布及考虑1/f噪声、白噪声,推导出了U型悬壁梁结构所需的传感器灵敏度、最小感应力,建立了仿真数学模型.应用ANSYS、matlab、femlab等有限元分析软件,设计仿真出悬臂梁表面的微电磁场分布规律.从而得到实现抗体-微磁球技术所需的微电感线圈结构.A comprehensive theoretical was reported, finite element analysis of cantilever-based and magnetic bead-based immunosensor for realizing the high-throughput identification and quantitation of a large number of biological molecules, at the same time, realizing the sensor reusable. Especially, this immunosensor can be easily fabricated with the Micro-Electro-Mechanical Systems (MEMS) technology. Aiming at the optimization design of U-shaped cantilever-based sensor, theory was employed to deduce the closed-form solutions to static stress. Expressions for predicting sensitivity and resolution were derived by combining stress distribution with power densities of 1/f noise and Johnson noise. At the same time, the paper applied the magnetic separation technique to implement the magnetic bead-based immunosensor, designing and simulating the planar microelectromagnat on the cantilever surface with ANSYS, matlab and femlab software. These methods and some conclusions presented provide a solid and useful basis for the design of a micro-fluidic bio-molecule separation and detection system using U-shaped cantilever, magnetic fields and magnetic beads.

关 键 词:微悬臂梁 微电感线圈 生化免疫传感器 

分 类 号:O462[理学—电子物理学] O484[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象