检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Weijun Cai Wolfgang Schaper
机构地区:[1]Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China [2]Max-Planck-Institute for Heart and Lung Research, Arteriogenesis Research Group, Bad Nauheim, D-61231, Germany
出 处:《Acta Biochimica et Biophysica Sinica》2008年第8期681-692,共12页生物化学与生物物理学报(英文版)
基 金:This work was supported by a grant from the National Science Foundation of China (No. 30771134) and the Kuehl Foundation of Germany
摘 要:Patients with occlusive atherosclerotic vascular diseases have frequently developed collateral blood vessels that bypass areas of arterial obstructions. The growth of these collateral arteries has been termed "arteriogenesis", which describes the process of a small arteriole's transformation into a much larger conductance artery. In recent years, intensive investigatious using various animal models have been performed to unravel the molecular mechanisms of arteriogenesis. The increasing evidence suggests that arteriogenesis seems to be triggered mainly by fluid shear stress, which is induced by the altered blood flow conditions after an arterial occlusion. Arteriogenesis involves endothelial cell activation, basal membrane degradation, leukocyte invasion, proliferation of vascular cells, neointima formation (in most species studied), changes of the extracellular matrix and cytokine participation. This paper is an in-depth review of the research critical to recent advances in the field of arteriogenesis that have provided a better understanding of its mechanisms.Patients with occlusive atherosclerotic vascular diseases have frequently developed collateral blood vessels that bypass areas of arterial obstructions. The growth of these collateral arteries has been termed "arteriogenesis", which describes the process of a small arteriole's transformation into a much larger conductance artery. In recent years, intensive investigatious using various animal models have been performed to unravel the molecular mechanisms of arteriogenesis. The increasing evidence suggests that arteriogenesis seems to be triggered mainly by fluid shear stress, which is induced by the altered blood flow conditions after an arterial occlusion. Arteriogenesis involves endothelial cell activation, basal membrane degradation, leukocyte invasion, proliferation of vascular cells, neointima formation (in most species studied), changes of the extracellular matrix and cytokine participation. This paper is an in-depth review of the research critical to recent advances in the field of arteriogenesis that have provided a better understanding of its mechanisms.
关 键 词:ARTERIOGENESIS shear stress ischemic remodeling ARTERY
分 类 号:R543.12[医药卫生—心血管疾病]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7