检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Electrical Engineering,Xi'an Jiaotong University
出 处:《Chinese Physics B》2008年第9期3258-3263,共6页中国物理B(英文版)
基 金:supported by the National High Technology Research and Development Program of China (Grant No 2006AA04Z180)
摘 要:description of magnetization curve has important effect on ferroresonance. In most of earlier ferroresonance studies the magnetization curve is modelled as a 3rd or 5th order polynomial. However, it is not comprehensive. This paper investigates the chaotic ferroresonance behaviour exhibited by a non-autonomous circuit which contains a nonlinear flux-controlled inductance. The ferromagnetic characteristic of this nonlinear inductance represented by a magnetization curve could be expressed as an nth order two-term polynomial. By varying the value of exponent n, the circuit can assume a diverse range of steady-state regimes including fundamental and subharmonic ferroresonance, quasi-periodic oscillations, and chaos. A detailed analysis of some simulations demonstrates that the probability of chaos increases as the exponent of the magnetization curve rises. The effect of varying the magnitude of the source voltage on the chaotic behaviour of the circuit is also studied.description of magnetization curve has important effect on ferroresonance. In most of earlier ferroresonance studies the magnetization curve is modelled as a 3rd or 5th order polynomial. However, it is not comprehensive. This paper investigates the chaotic ferroresonance behaviour exhibited by a non-autonomous circuit which contains a nonlinear flux-controlled inductance. The ferromagnetic characteristic of this nonlinear inductance represented by a magnetization curve could be expressed as an nth order two-term polynomial. By varying the value of exponent n, the circuit can assume a diverse range of steady-state regimes including fundamental and subharmonic ferroresonance, quasi-periodic oscillations, and chaos. A detailed analysis of some simulations demonstrates that the probability of chaos increases as the exponent of the magnetization curve rises. The effect of varying the magnitude of the source voltage on the chaotic behaviour of the circuit is also studied.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.121.54