检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张昆辉[1]
机构地区:[1]西北工业大学
出 处:《西北工业大学学报》2008年第4期481-487,共7页Journal of Northwestern Polytechnical University
摘 要:文中提出了一种基于对比度准则的非参数化合成孔径雷达(SAR)图像相位补偿方法——对比度最优相位调整算法。该算法收敛速度快,运算量小,相位误差估计精度高。和相位梯度自聚焦算法相比,它能够更稳定的估计高频和随机相位误差;和快速最小熵相位补偿算法相比,它的计算量大大减少。实测数据的处理表明了该算法的有效性。Aim. In my opinion, Ref. 4 by D. E. Wahl et al is slow and Ref. 11 by X. H. Qiu et al is limited to non broadband. I now present COPA(Contrast Optimization Phase Adjustment) that is fast and can be applied to any phase adjustment of SAR (Synthetic Aperture Radar),including broadband. In the full paper, I use section 1 to explain my COPA algorithm in some detail. In this abstract, I just add some pertinent remarks to listing the two subsections of section 1: the essentials of my COPA algorithm (subsection 1.1) and the implementation of COPA algorithm(subsection 1.2). In subsection 1.1, eqs. (3) and (11) are the most important. In subsection 1.2, I give a 4-point explanation of the flowchart of COPA algorithm; the flowchart is shown in Fig. 1 in subsection 1.2. Section 2 gives experimental data processed by PGA^[4](Phase Gradient Autofocus), FMEPC^[11] (Fast Minimum Entropy Phase Compensation) and COPA algorithms and compares the results of these three algorithms. Figs. 2 through 9 in section 2 show preliminarily the effectiveness of my COPA algorithm.
分 类 号:TN957[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30