检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Journal of Central South University of Technology》2008年第5期663-668,共6页中南工业大学学报(英文版)
基 金:Project(50374083) supported by the National Natural Science Foundation of China;Project(134375215) supported by the Research Fund for Postgraduate Innovation Project of Central South University, China
摘 要:To investigate dispersion mechanism of water-based ferrofluid, the effects of electrolytes on the dispersibility of ferrofluid in the dispersing system with different pH values were discussed. The ζ-potential of magnetic nano-particles was measured to discover the adsorbent state of oleate group on the surface of magnetite particles. The mechanism that coexisting electrolyte influences the dispersibility was studied. The results show that the electrolyte affects the stability of ferrofluid through an effect on the structure of surfactant bilayer adsorption, which was proved by ζ-potential measured. The associated mechanism of steric and electrostatic is dominant in aqueous ferrofluid.To investigate dispersion mechanism of water-based ferrofluid, the effects of electrolytes on the dispersibility of ferrofluid in the dispersing system with different pH values were discussed. The ζ-potential of magnetic nano-particles was measured to discover the adsorbent state of oleate group on the surface of magnetite particles. The mechanism that coexisting electrolyte influences the dispersibility was studied. The results show that the electrolyte affects the stability of ferrofluid through an effect on the structure of surfactant bilayer adsorption, which was proved by ζ-potential measured. The associated mechanism of steric and electrostatic is dominant in aqueous ferrofluid.
关 键 词:nano-magnetite ELECTROLYTE DISPERSIBILITY ζ-potential dispersion mechanism
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3