模拟退火粒子群算法在新交通控制模型中的应用  被引量:6

Simulated annealing particle swarm algorithm applied in new traffic control model

在线阅读下载全文

作  者:任子晖[1] 王坚[1] 

机构地区:[1]同济大学CIMS研究中心,上海201804

出  处:《计算机应用》2008年第10期2652-2654,共3页journal of Computer Applications

基  金:国家科技支撑计划项目(20060146);上海市社会发展重大专项项目(0612001);上海市基础研究重点项目(0614066);上海市科技发展基金重点项目(061612058);上海市登山行动计划项目(061111006)

摘  要:城市交通系统是个随机性很强、复杂的巨型系统,为了获得良好的通行效率,提出了一种基于模拟退火温度的自适应粒子群优化算法,同时给出了一种城市区域交通协调控制信号配时模型,然后将提出的方法应用于此模型。仿真结果表明:这种算法不仅能够克服基本粒子群算法陷入局部寻优的缺点,而且算法的收敛性和稳定性都很好,同时也表明该模型是可行的、有效的。The city transportation system is a random and complicated giant system. To acquire good traffic efficiency, a new adaptive Particle Swarm Optimization (PSO) algorithm based on simulated annealing temperature (SATPSO) was proposed, and a new harmony control signal model of city transportation was given. Then SATPSO was used in the model. The emulation results show that the algorithm can overcome the defects of the original PSO sinking into the local optimal, and has good convergence and stability. The model is feasible and effective.

关 键 词:粒子群优化 模拟退火温度 城市交通控制 信号配时 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP391.9[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象