检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡志鹏[1] 杜亚冰[1] 张玲[1] 李朋伟[1] 贾廷见[1] 莫育俊[1]
机构地区:[1]河南大学物理与电子学院
出 处:《光谱学与光谱分析》2008年第9期2111-2114,共4页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(10274019;10674041)资助
摘 要:采用B3LYP混合泛函和6-31G基函数组,并对重原子和轻原子使用离散函数和极化函数,利用密度泛函理论(density functional theory,简称DFT)计算了己酸乙酯的分子振动光谱,并以此为依据,首次对实验测得的己酸乙酯(Ethyl hexanoate)分子的正常拉曼光谱(NRS)和红外光谱(IR)进行了指认,对己酸乙酯分子的振动模式进行了归属。理论计算和实验数据的比较分析表明,理论计算结果的拉曼和红外各振动峰位与实验测量结果符合得较好。最后,分别把拉曼光谱和红外吸收谱中较强的峰位指认为己酸乙酯分子的拉曼特征峰和红外吸收的特征峰。己酸乙酯分子振动光谱的上述研究,可能在白酒调香,化工和生物等领域的检测方面具有广泛的应用,对进一步拓宽己酸乙酯分子的研究领域具有一定的参考价值。The vibrational spectra of ethyl hexanoate were calculated by the density functional theory(DFT) with B3LYP complex function, diffuse function and polarization function added to heavy atoms and light atoms. On the base of this, the normal Raman spectrum(NRS) and the infrared spectrum(IR) were assigned in detail in the present paper. Comparing the calculated results with the experimental data, the calculated results are in good agreement with the experimental results. The comparison of the experimental Raman and infrared spectra shows that in the experimental Raman spectrum, the strongest bands appear at the frequencies of 2 600-3 100 cm^-1, while the strongest band is not 1 734 cm^-1 but 1 444 cm^-1 at the frequencies of 400-2 000 cm^-1. The band 1 734 cm^-1 attributed to the CO stretch vibration is the distinctive mark of organic ester compounds, and the band 1 444 cm^-1 is related to the symmetric and anti-symmetric scissors vibration of C—H. In the experimental infrared spectrum, the strongest vibrational band is 1 739 cm^-1, which is related to CO stretch vibration; At the frequencies of 400-2 000 cm^-1, the relative intensity of the infrared spectrum is distinctively stronger than that of the Raman spectrum, but the relative intensity of infrared spectrum is weaker than that of the Raman spectrum at the frequencies of 2 600-3 100 cm^-1. In the frequencies of 2 600-2 800 cm^-1, the vibrational bands 2 762 and 2 732 cm^-1 do not appear in the experimental spectra, which may originate from two reasons: (1) the weak interaction of molecules. Also, the relative intensity of these vibrational bands is very weak in the experimental spectra, and this may testify that the interaction of molecules is rather weak; (2) the vibrational bands may belong to second order vibrational mode at the frequencies of 2 600-2 800 cm^-1. The relative intensity of infrared bands is weaker than that of the Raman bands at the frequencies of 2 600-2 800 cm^-1. At the end, the stronger bands appearing in Raman and
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15