检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘福莉[1] 陈华才[1] 姜礼义[1] 胡献恩[1]
机构地区:[1]中国计量学院光学与电子科技学院,浙江杭州310018
出 处:《中国计量学院学报》2008年第3期278-282,共5页Journal of China Jiliang University
基 金:国家"863"高新技术研究发展计划项目(No.2007AA10Z216)
摘 要:以8种食用油纯油的43个样品为对象,研究了近红外透射光谱结合聚类分析法快速鉴别食用油种类的可行性.采集样品在12500-4000cm^-1范围内的傅立叶变换近红外透射光谱,利用光谱模式识别法中的聚类分析法对图谱进行定性分类鉴别.实验证明,光谱经二阶导数预处理后,最短距离法、最长距离法和方差平方和法均可准确无误地将食用油样品分为8类,判别模型对预测集样品的准确率达到100%.研究表明,近红外透射光谱结合聚类分析法可以为快速无损鉴别食用油种类提供一种准确可靠的方法.The objective of this study was to develop a rapid, undamaged method for the discrimination of the kinds of edible oil. The NIR(near infrared spectroscopy) transmission spectra of 43 samples covering 8 kinds of edible oil were collected over 12 500-4 000 cm^-1. The spectra were pretreated with 2nd derivative method. The discrimination models were established using different clustering analysis methods. The best algorithms were the single linkage algorithm, the complete linkage algorithm and the ward's algorithm with a 100% prediction accuracy. The results suggest that near infrared transmission spectroscopy combined with clustering analysis is both accurate and stable for edible oil discrimination.
分 类 号:TN274.52[电子电信—物理电子学] TQ645.1[化学工程—精细化工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222