检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Dian-hua Wu Jian-xiao Yang Bi-chang Huang
机构地区:[1]Department of Mathematics, Guangxi Normal University, Guilin 541004, China
出 处:《Acta Mathematicae Applicatae Sinica》2008年第4期643-648,共6页应用数学学报(英文版)
基 金:Supported by the National Natural Science Foundation of China(No.10561002);Guangxi Science Foundation(No.0640062);Innovation Project of Guangxi Graduate Education.
摘 要:A (v, k, λ) difference family ((v, k, λ)-DF in short) over an abelian group G of order v, is a collection F=(Bi|i ∈ I} of k-subsets of G, called base blocks, such that any nonzero element of G can be represented in precisely A ways as a difference of two elements lying in some base blocks in F. A (v, k, λ)-DDF is a difference family with disjoint blocks. In this paper, by using Weil's theorem on character sum estimates, it is proved that there exists a (p^n, 4, 1)-DDF, where p = 1 (rood 12) is a prime number and n ≥1.A (v, k, λ) difference family ((v, k, λ)-DF in short) over an abelian group G of order v, is a collection F=(Bi|i ∈ I} of k-subsets of G, called base blocks, such that any nonzero element of G can be represented in precisely A ways as a difference of two elements lying in some base blocks in F. A (v, k, λ)-DDF is a difference family with disjoint blocks. In this paper, by using Weil's theorem on character sum estimates, it is proved that there exists a (p^n, 4, 1)-DDF, where p = 1 (rood 12) is a prime number and n ≥1.
关 键 词:Difference family disjoint difference family optimal optical orthogonal codes character sum
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3