电压稳定极限点的快速判定及其灵敏度算法  被引量:14

Fast Determination of Voltage Stability Critical Point and Its Sensitivity Algorithm

在线阅读下载全文

作  者:李勇[1] 张勇军[2] 刘巍[3] 陈旭[3] 蔡广林[2] 陈扬华[2] 

机构地区:[1]广东省电力设计研究院,广东省广州市510600 [2]华南理工大学电力学院,广东省广州市510640 [3]广东电网公司,广东省广州市510600

出  处:《电网技术》2008年第18期47-51,61,共6页Power System Technology

基  金:国家自然科学基金资助项目(50337010);广东省自然科学基金项目(06025630)~~

摘  要:利用负荷裕度最大化的最优潮流计算结果,区分了电压稳定极限点,即鞍结分岔点和极限诱导分岔点,并求出了负荷裕度对控制变量的灵敏度。这种方法在求解极限点时避免了使用连续潮流法,在计算灵敏度时避免了求解潮流雅可比矩阵零特征值对应的左特征向量,节省了时间,适用于在线分析。极限点的计算过程中考虑了有功出力的再调度,充分挖掘了系统的潜在裕度。系统算例验证了所提方法的实用性和灵敏度线性估计的准确性。By use of calculation results of optimal power flow based on maximized load margin, the saddle node bifurcations (SNB) and limit induce bifurcation (LIB), i.e., the voltage stability critical points under different operation conditions, are distinguished, and the sensitivity of load margin to control variable is solved. When critical point is being solved, using this method, the continuous power flow method can be avoided; when sensitivity is calculated it can be avoided to solve the left eigenvector corresponding to the zero eigenvalue of power flow Jacobian matrix, thus the computing time can be saved and this method is suitable to online analysis. During the calculation of critical point the re-dispatching of active power is taken into account, so the latent margin of power system can be fully unearthed. Case study results of IEEE 14-bus system, IEEE 30-bus system, IEEE 118-bus system and IEEE 300-bus system show that the proposed method is practicable and its linear of sensitivity of sensitivity is accurate.

关 键 词:电压稳定极限点 鞍结分岔(SNB) 极限诱导分岔(LIB) 负荷裕度 灵敏度 

分 类 号:TM712[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象