检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhi-biao Shi Tao Yu Qun Zhao Yang Li Yu-bin Lan
机构地区:[1]School of Energy Resources and Mechanical Engineering, Northeast Dianli University, Jilin 132012, P. R. China [2]School of Chemistry Engineering, Northeast Dianli University, Jilin 132012, P. R. China [3]School of Electrical Engineering, Northeast Dianli University, Jilin 132012, P. R. China [4]Aerial Application Technlogy, usDA-ARS-SPARC-APMRU, Co)lege Station, TX 77845, USA
出 处:《Journal of Bionic Engineering》2008年第3期253-257,共5页仿生工程学报(英文版)
基 金:the Science and Technology Plan Projects, Department of Education of Jilin Province, P R China (Grant no. 2006026)
摘 要:When the electronic nose is used to identify different varieties of distilled liquors, the pattern recognition algorithm is chosen on the basis of the experience, which lacks the guiding principle. In this research, the different brands of distilled spirits were identified using the pattern recognition algorithms (principal component analysis and the artificial neural network). The recognition rates of different algorithms were compared. The recognition rate of the Back Propagation Neural Network (BPNN) is the highest. Owing to the slow convergence speed of the BPNN, it tends easily to get into a local minimum. A chaotic BPNN was tried in order to overcome the disadvantage of the BPNN. The convergence speed of the chaotic BPNN is 75.5 times faster than that of the BPNN.When the electronic nose is used to identify different varieties of distilled liquors, the pattern recognition algorithm is chosen on the basis of the experience, which lacks the guiding principle. In this research, the different brands of distilled spirits were identified using the pattern recognition algorithms (principal component analysis and the artificial neural network). The recognition rates of different algorithms were compared. The recognition rate of the Back Propagation Neural Network (BPNN) is the highest. Owing to the slow convergence speed of the BPNN, it tends easily to get into a local minimum. A chaotic BPNN was tried in order to overcome the disadvantage of the BPNN. The convergence speed of the chaotic BPNN is 75.5 times faster than that of the BPNN.
关 键 词:electronic nose LIQUOR ALGORITHM principal component analysis
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49