检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任九生
出 处:《Applied Mathematics and Mechanics(English Edition)》2008年第10期1319-1327,共9页应用数学和力学(英文版)
基 金:the National Natural Science Foundation of China(Nos.10772104 and10402018);the Shanghai Leading Academic Discipline Project(No.Y0103)
摘 要:Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynamics. By numerical computation and dynamic qualitative analysis of the nonlinear differential equation, it is shown that there exists a certain critical value for the internal load describing motion of the inner surface of the shell. Motion of the shell is nonlinear periodic or quasi-periodic oscillation when the average load of the periodic load or the constant load is less than its critical value. However, the shell will be destroyed when the load exceeds the critical value. Solution to the static equilibrium problem is a fixed point for the dynamical response of the corresponding system under a suddenly applied constant load. The property of fixed point is related to the property of the dynamical solution and motion of the shell. The effects of thickness and load parameters on the critical value and oscillation of the shell are discussed.Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynamics. By numerical computation and dynamic qualitative analysis of the nonlinear differential equation, it is shown that there exists a certain critical value for the internal load describing motion of the inner surface of the shell. Motion of the shell is nonlinear periodic or quasi-periodic oscillation when the average load of the periodic load or the constant load is less than its critical value. However, the shell will be destroyed when the load exceeds the critical value. Solution to the static equilibrium problem is a fixed point for the dynamical response of the corresponding system under a suddenly applied constant load. The property of fixed point is related to the property of the dynamical solution and motion of the shell. The effects of thickness and load parameters on the critical value and oscillation of the shell are discussed.
关 键 词:hyper-elastic cylindrical shells nonlinear differential equation periodic oscillation quasi-periodic oscillation critical load
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28