检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国海洋大学环境科学与工程学院 [2]国家海洋局第一海洋研究所,山东青岛266061
出 处:《海洋环境科学》2008年第5期405-408,共4页Marine Environmental Science
基 金:国家自然科学基金(40606013);山东省自然科学基金(Y2006E01)
摘 要:滩涂在光学遥感影像中具有光谱信息综合的特点,单纯基于光谱特征的滩涂信息提取方法精度不高。本文在海岸带地物分类过程中,引入了纹理特征分析,发展了一种基于光谱和纹理特征融合的滩涂信息提取方法。该方法首先利用神经网络分别实现基于像元光谱特征和基于图像纹理特征的海岸带地物分类;在两种分类结果的基础上,建立融合模型,完成决策级的信息融合,从而得到最终的滩涂信息提取结果。试验结果表明,在海岸带地物分类过程中引入纹理特征分析是有效的,决策级的光谱与纹理信息融合可以使滩涂信息提取的精度达到92.3%。另外,神经网络方法用于海岸带地物分类亦是可行的。Usually there is comprehensive spectral information in optical image in the tidal flat, but the accuracy of the extraction information in the tidal fiat based on the material spectrum features is lower. In this paper, the texture features analysis is introduced to the material classification in the coastal zone, and a method was developed based on the fusion of spectral and textural informaation. By means of the neural networks the material classification in the coastal zone based on the pixel spectrum features and image texture features are carried out. A decision fusion mode is constructed by above the two methods. The accuracy of the extraction information in the tidal flat was improved. The results show that the introduction of the texture features analysis is effective to the material classifica- tion of the coastal zone. The decision fusion of spectral and textural information can improve the accuracy of the extraction information in the tidal fiat. The method of the neural networks is feasible in the material classification in the coastal zone.
分 类 号:X87[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151