一种改进的基于差分进化的多目标进化算法  被引量:6

Improved multi-objective evolutionary algorithm based on differential evolution

在线阅读下载全文

作  者:李珂[1] 郑金华[1] 

机构地区:[1]湘潭大学信息工程学院,湖南湘潭411105

出  处:《计算机工程与应用》2008年第29期51-56,共6页Computer Engineering and Applications

基  金:国家自然科学基金No.60773047;湖南省教育厅重点科研项目(No.06A074)~~

摘  要:近年来运用进化算法(EAs)解决多目标优化问题(Multi-objective Optimization Problems MOPs)引起了各国学者们的关注。作为一种基于种群的优化方法,EAs提供了一种在一次运行后得到一组优化的解的方法。差分进化(DE)算法是EA的一个分支,最开始是用来解决连续函数空间的问题。提出了一种改进的基于差分进化的多目标进化算法(CDE),并且将它与另外两个经典的多目标进化算法(MOEAs)NSGA-Ⅱ和SPEA2进行了对比实验。Recently,the use of evolutionary algorithms(EAs) to solve the Multi-objective Optimization Problems(MOPs) has attracted much attention.EA is a population based optimized approach which can find a group of Pareto-optimal solutions in a single run.Differential Evolution(DE) is a branch of EA that is developed to handle problems over continuous domains.An improved Multi-objective Evolutionary Algorithm is proposed based on Differential Evolution(CDE) to solve MOPs.The proposed algorithm is compared to the other two classical Muhi-objective Evolutionary algorithms(MOEAs) NSGA-Ⅱ and SPEA2 with the experiment results.

关 键 词:多目标优化 差分进化 多目标进化算法(CDE) 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象